The 11- by 11-Foot Transonic Wind Tunnel (11-Foot TWT) Facility is part of the Unitary Plan Wind Tunnel (UPWT) complex at NASA Ames Research Center at Moffett Field, California, where generations of commercial and military aircraft and NASA space vehicles, including the space shuttle, have been designed and tested. The 11-Foot TWT is a closed-return, variable-density tunnel with a fixed-geometry, ventilated test section with a flexible wall nozzle. It is one of three separate test sections powered by a common drive system. A three-stage, axial-flow compressor powered by four wound-rotor, variable-speed induction motors, produces airflow. Interchangeability of models among the UPWT test sections allows testing across a wide range of conditions. The 11-Foot TWT has been instrumental in the development of virtually every domestically produced commercial transport and military fixed-wing airframe since the 1960s. The facility is used extensively for airframe testing and aerodynamic studies and has played a vital role in every manned space flight program, including NASA's new Orion space capsule, on which astronauts will fly to the International Space Station, the Moon, and beyond. # **Facility Benefits** - Excellent optical access supports advanced flow techniques, including pressure-sensitive paint, particle image velocimetry, oil flow interferometry, infrared thermography, and Schlieren imaging - Model supports include a rear sting, semispan turntable, 2-DWing, high-angle kick-sting, and a roll mechanism sting provides wingslevel yaw capability - High-pressure air at 3000-psi is digitally controlled, with preheating available and over 6 million scf of storage - A steady-state data system incorporates the latest technology in a flexible, modular configuration to satisfy the most demanding test configurations, with the capability of acquiring pitch-pause and continuous-sweep data - Onsite instrumentation measures balance loads, model position, surface pressures, temperatures, and wind tunnel conditions - An extensive library of standard aerodynamic computations is augmented by the ability to easily add customer-defined equations; corrections include wall interference and buoyancy - A dynamic data system acquires more than 100 channels of dynamic and transient data, including unsteady pressures, acoustics, and dynamic structural loads # **Facility Applications** Commercial, military, and NASA programs "[This] wind tunnel has set a new standard in test productivity and technical excellence." —Customer comment #### **Characteristics** | Test section dimensions | 11 ft high by 11 ft wide by
22 ft long | |-------------------------|---| | Area | 121 ft ² | | Speed | Mach 0.20 to 1.45 | | Reynolds number | 0.30 to 9.6×10 ⁶ per ft | | Temperature | 110 ± 20 °F | | Pressure | 3.0 to 32 psia | | Test gas | Air | ## **Data Acquisition and Processing** | Steady-State Data | | | |-------------------------------|----------|------------------| | System | Channels | Sample frequency | | Analog input | 48 | 1000 Hz | | Digital input | 16 | Test dependent | | Force balances | 32 | 1000 Hz | | Pressure | 2048 | 20 Hz | | Temperature | 60 | 10 Hz | | Time Variant Data, High Speed | | | | System | Channels | Sample frequency | | Analog | 160 | 20-KHz bandwidth | | Force balance | 160 | 80-KHz bandwidth | | 01 | | | Classified capability available. ## Instrumentation | Strain gauge balances | Six component (full span)
Five component (semispan) | |--------------------------------------|--| | Angle-of-attack (AOA) accelerometers | ±15° with offsets to +45° | #### **Contact Information** www.aeronautics.nasa.gov/atp Frank J. Kmak NASA Ames Research Center Phone: 650–604–1463 E-mail: Frank.J.Kmak@nasa.gov